GATEWAY INSTITUTE OF ENGINEERING AND TECHNOLOGY, SONIPAT LESSON PLAN

Name of the Faculty : Mr. Narender Kumar

Discipline : Mechanical Engineering

Semester : 4th

Subject : Strength of Materials-2 (ME 206B)

Lesson Plan Duration : 15 Weeks (January 2018 to April 2018)

Work Load (Lectures) per week in hours: Lectures – 03, Tutorial – 01

	Theory		
Week	Lecture	Topic (including assignment/ test)	
	Day		
	1	Hoop & Longitudinal stresses in cylindrical vessel & their derivations under internal	
1st	2	Hoop & Longitudinal stresses in spherical vessel & their derivations under internal	
	3	Hoop & Longitudinal strains in cylindrical & spherical vessels	
	4	Volumetric strains	
2nd	5	Concept and difference of thin and thick vessels	
	6	Derivation of Lame's equations	
	7	Radial & hoop stresses in thick and compound cylinders	
3rd	8	Radial & hoop strains in thick and compound cylinders	
	9	Radial & hoop stresses in spherical shells subjected to internal fluid pressure only	
	10	Radial & hoop strains in spherical shells subjected to internal fluid pressure only	
4th	11	Definitions and basic concepts of strain energy	
	12	Expressions for strain energy stored in a body when load is gradually	
	13	Suddenly and with impact	
5th	14	Strain energy of beams due to bending	
	15	Strain energy of beams due to pure shear	
	16	Horizontal shear and torsion	
6th	17	Strain energy of beams due to beam deflections	
	18	Castigliano's theorems	
	19	Maxweel theorems	
7th	20	Various theories of elastic failures with derivations and graphical representations	
	21	Applications to problems of 2-dimensional stress system with combined direct loading	
	22	Combined torsional and direct loading	
8th	23	Stresses in Rotating Ring and Disc	
	24	Hollow disc and solids disc	
	25	Stresses in rotating cylinders	
9th	26	Hollow cylinders & solids cylinder	
	27	Rotating discs of uniform strength	
	28	Stresses in open coiled helical spring subjected to axial loads	
10th	29	Stresses in open coiled helical spring subjected to axial couples	
	30	Combined action of axial loads and axial couples	
	31	Leaf springs	
11th	32	Flat spiral springs	
	33	Energy methods in determining spring deflection	
	34	Properties of beam cross section	
12th	35	Product of inertia	

	36	Ellipse of inertia
	37	Slope of the neutral axis
13th	38	Stresses & deflections
	39	Shear center and the flexural axis for I-section and channel section
14th	40	Stresses in beam of initial large radius of curvature
	41	Position of neutral axis for rectangular
	42	Circular and trapezoidal sections
15th	43	Stresses in crane hooks
	44	Stresses in circular rings subjected to tension or compression
	45	Revision (Previous year papers)

Name of the Faculty : Mr. Jeetendra Kumar

Discipline : Mechanical Engineering

Semester : 4th

Subject : MANUFACTURING TECHNOLOGY (ME202B)

Lesson Plan Duration : 15 Weeks (January 2018 to April 2018)

Work Load (Lectures) per week in hours: Lectures – 03, Tutorial – 01

		Theory			
Week	Lecture				
	Day	Topic (including assignment/ test)			
	1	Steps involved in casting, advantages, limitations and applications of casting process,			
1st	2	molding methods, molding materials and properties			
	3	Design considerations in casting, gating system design			
	4	Riser design, directional solidification in castings, problems			
2nd	5	Melting practice: Cupola, charge calculations,			
	6	cleaning of casting, Fettling,			
	7	defects in castings and their remedies,			
3rd	8	Shell molding, precision investment casting,			
	9	permanent mold casting, die casting			
	10	centrifugal casting, and continuous casting			
4th	11	Classification of metal forming processes, Nature of plastic deformation			
	12	Hot working and cold working,			
	13	yield criteria and their significance,			
5th	14	Principles of rolling roll passes roll pass sequences.			
	15	Forging: process and defects,			
	16	Extrusion and other processes			
6th	17	Extrusion principle, wire drawing, swaging, tube making.			
	18	POWDER METALLURGY - Introduction			
	19	Production of Metallic Powder,			
7th	20	Processing methods			
	21	Design consideration for powder metallurgy			
041	22	INTRODUCTION TO WELDING -Classification of welding process, Selection of a welding process,			

δth	23	Effect of welding parameters,
-	24	Selection of electrodes and fluxes, Metal transfer & its importance in arc welding,
	25	Power sources for arc welding, Inspections and defects of weldments,
9 th	26	Gas welding,
	27	Arc welding, Resistance welding
	28	OTHER WELDING PROCESSES: Introduction of thermit welding,
10th	29	electro slag welding,
	30	Electron beam welding, forge welding,
	31	friction welding,
11th	32	Diffusion welding,
	33	brazing and soldering
	34	Classification of sheet metal processes
12th	35	Press tool operations, shearing action, Principle,
	36	Process parameters, equipment and application of the following processes, a dashpot,
	37	power absorbed in bearings
13th	38	piercing, blanking, deep drawing,
	39	Spinning, stretch forming,
	40	embossing and coining,
14th	41	Sheet metal die design, problems.
	42	PLASTIC PROCESSING- Introduction, plastic materials,
	43	Extrusion of plastic,
15th	44	injection moulding,.
Γ	45	Blow moulding

Name of the Faculty : Mr. Lalit Kumar Discipline:- B. Tech. (ME) Semester : 4th Subject : Material Science (ME 204 B) Lession Plan Duration: 15 Weeks (from January,2018 to April,2018 Work Load (Lectures) per week in hours: Lectures – 03, Tutorial – 01, Practical- 02

Week	Theory		
	Lecture Da	Topic (including assignment/test)	Practical D
	1st	Engineering Materials: Classification of engineering materials,	
1st	2nd	Property spectrum of engineering materials Crystal Geometry:	1st
	3rd	space lattice, unit cell, Bravais crystal system, atomic packing fraction,	
	4th	Miller indices, interplaner spacing	
2nd	5th	linear density, planer density, Numerical problems	2nd
	6th	Crystal Imperfections: Classification of Imperfections, ,	
	7th	line imperfection	3rd
3rd	8th	Mixed dislocations, Characteristics of dislocation,	
510	9th	Sources of dislocation, their effects and remedies, phenomenon related to behaviour of dislocations,	514
4th	10th	phenomenon related to behaviour of dislocations	
	11th	Surface imperfection, volume imperfection, whiskers	4th
	12th	Solid solution, types of solid solution, phases	

	13th	Gibb's Phase rule, Phase diagrams, unary and binary phase diagrams,	
5th	14th	Eutectic and eutectoid phase diagrams, peritectic and peritectoid phase diagrams	5th
	15th	Microstructural changes, lever rule, Iron carbon system	
	16th	PHASE TRANSFORMATIONS: terminology, Strengthening mechanism,	
6th	17th	Cold and hot working, precipitation hardening,	6th
	18th	Dispersion hardening, solid solution hardening, Recovery, re-crystallization and grain growth.	
	19th	re-crystallization and grain growth.	
7th	20th	Diffusion process, types of diffusion, laws of diffusion- Fick's first law and Fick's second law of	7th
	21		,
	21st	HEAT TREATMENT: purpose of heat treatment, microstructure of steel and iron,	
	22nd	Transformation in Steel and Critical cooling curve, Hardening,	
8th	23rd	annealing, normalizing	8th
	24th	Stress relieving, tempering, carburizing, nitriding,	
	25th	Cyaniding, flame and induction hardening.	
9th	26th	Inelastic deformation, slip systems, critical resolved shear stress (crss) yielding	9th
	27th	Strain hardening, bauschinger effect, frank read source,	
	28th	Anelastic behaviour, Viscoelastic behaviour	
10th	29th	FRACTURE: Ductile fracture, brittle fracture,	
	30th	Griffith theory of crack propagation, cleavage fracture,	
	31st	method of protection against fracture ,Ductile to brittle transition	
11th	32nd	CORROSION AND OXIDATION: Corrosion,,	
	33rd	types of corrosion	
	34th	laws of corrosion ,oxidation and its mechanism, passivity	
12th	35th	Special type of corrosion, protection against corrosion and oxidation.	
	36th	Fatigue, mechanism of fatigue, improving fatigue life, Creep, factor affecting creep	
	37th	mechanism of creep, creep resistant materials	
13th	38th	Plain carbon steel, cast iron, effects of alloying elements on steel,	
	39th	effects on alloying elements on non-ferrous metals,	
	40th	ferrous alloys,	
14th	41st	non ferrous alloys, alloys in different applications, materials for special cases.	
	42nd	Composite materials: introduction, laminates, reinforced	
	43rd	composite materials and their classification	
15th	44th	particulate composites, flake composites,	
	45th	whisker reinforced composites, hybrid composites,	

Name of Faculty: Ms Surbhi gupta Discipline:- ME,and CE Semester: 4th Subjects: Engineering Economics (MGT-201B) Lession Plan Duration: 15 Weeks (from January,2018 to April,2018 Workload(Lecture/Practical) per week (in hours) : Lecture-03 Week (in hours) : Lecture-03

Week		Theory
	Lecture Da	Topic (including assignment/test)
1st	1st	Definition of economics
	2nd	Nature of economic problem, micro and macro economics- their feature and scope
	3rd	Production possibility curve,

2nd	4th	Economic laws and their nature.
	5th	Utility & its features
	6th	Law of diminishing marginal utility
	7th	Test
3rd	8th	Law of equi-marginal utility
	9th	Its practical application and importance.
	10th	Meaning of demand, individual and market demand schedule,
4th	11th	Law of demand
	12th	shape of demand curves
	13th	Test
5th	14th	Elasticity of demand and degrees of price elasticity of demand.
	15th	Measurement of Elasticity of demand.
	16th	Factors effecting elasticity of demand
6th	17th	Practical importance & application of the concept of elasticity of demand.
	18th	Test
	19th	Concepts of cost-fixed cost, variable cost
7th	20th	fixed cost, variable cost, Average cost, marginal cost.
	21st	money cost, real cost, opportunity cost.
	22nd	Shape of average cost, Marginal cost, total cost etc. In short run and long run
8th	23rd	Meaning of production and factors of production
	24th	law of variable proportions
	25th	law of return to scale
9th	26th	Internet and external economics andDiseconomies of scale
	27th	Test
	28th	Meaning of market
10th	29th	Features of market
	30th	Type of markets – perfect competition mainFeatures of these markets)
	31st	Monopoly(mainFeatures of these markets)
11th	32nd	oligopoly(mainFeatures of these markets)
	33rd	monopolistic competition (mainFeatures of these markets)
	34th	Test
12th	35th	Supply and law of supply
	36th	Role of demand & supply in price determination
	37th	Effect of changes in demand and supply on prices
13th	38th	Nature And characteristics of Indian economy,
	39th	Test
	40th	Privatization – meaning, merits and demerits.
14th	41st	Globalization of India economy – merits and demerits
	42nd	Elementary concept of WTO & Trips agreement
	43rd	Monitory policy
15th		
15th	44th	Fiscal policy

Name of Faculty: Mr. Nikhil Rohilla

Discipline:- B. Tech. (ME) Semester: 4th Subjects: Fluid Machines (ME 208B), Fluid Machines Lab (ME 214B) Lession Plan Duration: 15 Weeks (from January,2018 to April,2018 Workload(Lecture/Practical) per week (in hours) : Lecture-04, Practicals -02 hours

Week	Theory		
week	Lecture Da	a Topic (including assignment/test)	Practical D
	1st	Impulse – momentum principle, jet impingement - on a stationary flat plate	
1st	2nd	Inclined plate and a hinged plate, at the center of a stationary vane	1st
	3rd	On a moving flat plate, inclined plate, a moving vane and a series of vanes	
	4th	Jet striking tangentially at the tip of a stationary vane and moving vane(s), jet propulsion	
		of ships. Problems	
2nd	5th	Classification – impulse and reaction turbines, water wheels	2nd
	6th	component parts, construction, operation and governing mechanism of a Pelton wheel,	
	7th	work done, effective head, available head and efficiency of a Pelton wheel,	
3rd	8th	design aspects, speed ratio, flow ratio, jet ratio,	3rd
	9th	number of jets, number of buckets and working proportions	
	10th	Performance Characteristics, governing of impulse turbines. Problems	
4th	11th	Component parts, construction and operation of a Francis turbine	4th
	12th	governing mechanism, work done by the turbine runner,	
	13th	working proportions and design parameters,	
5th	14th	slow, medium and fast runners,	5th
	15th	degree of reaction, inward/outward flow reaction turbines,	
	16th	Performance Characteristics, Problems	
6th	17th	Component parts, construction and operation of a Propeller	6th
	18th	Kaplan turbine, differences between the Francis and Kaplan turbines	
	19th	draft tube - its function and different forms,	
7th	20th	Performance Characteristics, Governing of reaction turbine	7th
	21st	Introduction to new types of turbine, Deriaz (Diagonal), Bulb, Tubular turbines,	
	22nd	Problems	
8th	23rd	Dimensional homogeneity, Rayleigh's method and Buckingham's p-theorem	8th
	24th	model studies and similitude, dimensionless numbers and their significance	
	25th	Unit quantities, specific speed and model relationships for turbines, scale effect,	
9th	26th	Cavitations – its causes, harmful effects and prevention	9th
	27th	Thomas cavitation factor, permissible installation height, Problems.	
	28th	Function, construction and operation of Hydraulic accumulator	
10th	29th	hydraulic intensifier, hydraulic crane	10th
	30th	hydraulic lift and hydraulic press,	
11th	31st	Fluid coupling and torque converter,	
	32nd	Hydraulic ram,	11th
	33rd	Problems	
	34th	Classification, velocity vector diagrams and work done	
12th	35th	manometric efficiency, vane shape, head capacity relationship and pump losses,	12th

1201	36th	Pressure rise in impeller, minimum starting speed, design considerations, multi-stage	1 <i>2</i> 01
		pumps.	
	37th	Similarity relations and specific speed, net positive suction head	
13th	38th	cavitation and maximum suction lift, performance characteristics	13th
	39th	Brief introduction to axial flow, mixed flow and submersible pumps, Problems.	
	40th	Construction and operational details, discharge coefficient, volumetric efficiency and	
		slip	
14th	41st	work and power input, effect of acceleration and friction on indicator diagram (pressure	14th
		– stroke length plot),	
	42nd	separation, air vessels and their utility, rate of flow into or from the air vessel	
	43rd	maximum speed of the rotating crank, characteristic curves,	
15th	44th	Centrifugal vs reciprocating pumps, brief introduction to screw, gear, vane and radial	15+h
		piston pumps, Problems.	1501
	45th	Revision (Previous year papers)	

Name of faculty:- Mr. Vikram Kapoor (Theory) and Mr. Vikram Kapoor (Practical)

Discipline:-Mechanical

Semester:- 4th

Subject:- ENERGY CONVERSION (ME-210B)

:-ENERGY CONVERSION LAB (ME-216B)

Lesson Plan Duration:-15 week (January 2018 to April 2018)

Work Load (Lecture/Practical) per week (in hours):- Lectures -03, Tutorial - 01, Practicals-02

Week		Theory	
	cture (Da	Topic (including assignment /test)	ctical (Da
1 st	1 st	Classification of fuels- solid, liquid & gaseous fuels	1^{st}
	2^{nd}	Combustion equation, Stochiometric air-fuel ratio	
	3 rd	Excess air, Orsat apparatus for exhaust & flue gas, Enthalpy and internal energy of combustion	
2 nd	1 st	Enthalpy of formation, Adiabatic flame temperature, Calorific values of fuel	2^{nd}
	2^{nd}	Assignment: Numerical of Fuel and combustion	
	3 rd	Classification, comparison between fire and water tube boilers. Essentials of a good boiler, Cons	
3 rd	1 st	High pressure boilers-Benson, Lamont, Loeffler and Velox boilers.	3 rd
	2 nd	Boiler mountings and accessories.	
	3 rd	Boiler performance, Natural& Artificial drafts, Chimney height	
4 th	1 st	Maximum draft and chimney efficiency,	4 th
	2^{nd}	Boiler heat balance sheet	
	3 rd	Assignment-Numerical of Chimney height	
5 th	1 st	Carnot Vapour Cycle, Rankine vapour cycles	5 th
	2^{nd}	Effect of operating conditions on efficiency of Rankine cycle.	
	3 rd	Rankine cycle with superheat, Rankine cycle with Reheat and regeneration	
6 th	1 st	Binary vapour cycle	6 th
	2 nd	Assignment: Numerical of Rankine cycle	
	3 rd	Velocity and heat drop, Mass discharge through a nozzle	

7 th	1 st	Critical pressure ratio and its significance	7 th
	2 nd	Effect of friction and nozzle efficiency	
	3 rd	Supersaturated flow, Relationship between area, velocity & pressure in nozzle flow	
8 th	1 st	Assignment: Numerical of Nozzle, Test	8 th
	2 nd	Classification of Impulse Turbine- Flow through blades	
	3 rd	velocity diagram, power output and efficiency, Maximum blade efficiency of single stage impulse	
9 th	1 st	Compounding of impulse turbine.	9 th
	2 nd	Reaction Turbine-Flow through blades, degree of reaction, velocity diagram, power output,	
	3 rd	Blade efficiency and blade height, Comparison of impulse and impulse reaction turbines	
10 th	1^{st}	Energy losses in steam turbines	10 th
	2 nd	Stage efficiency, Overall efficiency and reheat factor.	
	3 rd	Condition for maximum blade efficiency for impulse and reaction turbine	
11 th	1^{st}	Governing of steam turbines	
	2 nd	Assignment: Numerical of impulse turbine	
	3 rd	Elements of a condensing plant, Types of condensers	
12 th	1^{st}	Comparison of jet and surface condensers.	
	2^{nd}	Condenser vacuum	
	3 rd	Sources of air leakage & its disadvantages	
13 th	1 st	Vacuum efficiency and condenser efficiency	
	2 nd	Determination of mass of cooling water for jet and surface condensers	
	3 rd	Cooling ponds and cooling towers	
14 th	1 st	Working of a single stage reciprocating air compressor, Calculation of work input with and with	
	2 nd	Volumetric efficiency	
	3 rd	Isothermal efficiency, Advantages of multi stage compression	
15 th	1 st	Multi -stage compressor with Inter-cooling	
	2 nd	Perfect Inter cooling	
	3 rd	Optimum intercooler pressure	

Practical

Topic

To study crystal structures with the help of ball model.

To study crystal structures and crystals imperfections using ball models.

To study hardening (by quenching) of steel specimen by Jominy Test.

To observe effect of tempering temperature on the property

To observe effect of tempering temperature on the property of given steel specimen.

To study the mechanism of chemical corrosion and its protection

To study the properties of various types of plastics

To study Bravais lattices with the help of models.

To study microstructures of metals/ alloys through microscopic observation.

Practical				
Торіс				
To study the constructional details of a Pelton turbine and draw its fluid flow circuit.				
To draw the following performance characteristics of Pelton turbine-constant head, Constant-speed and constant efficiency curves.				
To study the constructional details of a Francis turbine and draw its fluid flow circuit.				
To draw the constant head, constant speed and constant efficiency performance Characteristics of Francis turbine.				
To study the construction details of a Kaplan turbine and draw its fluid flow circuit.				
To draw the constant head, speed and efficiency curves for a Kaplan turbine.				
To study the constructional details of a Centrifugal Pump and draw its characteristic Curves.				
To study the constructional details of a Reciprocating Pump and draw its characteristics Curves.				
To study the construction details of a Gear oil pump and its performance curves.				
To study the constructional details of a Hydraulic Ram and determine its various efficiencies.				

Practical
Торіс
To study low pressure boilers and their accessories and mountings.
To study high pressure boilers and their accessories and mountings.
To study the working of impulse and reaction steam turbines.
To find the condenser efficiencies.
To study and find volumetric efficiency of a reciprocating air compressor.
To study cooling tower and find its efficiency.

To find calorific value of a sample of fuel using Bomb calorimeter.

To prepare heat balance sheet for given boiler.

To find dryness fraction of steam by separating and throttling calorimeter.

Calibration of Thermometers and pressure gauges.